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PREFACE

This report presents an analysis of aberration effects on a cir-
cularly deflected electron beam, used as a phase writer system tn the
beam analyzer built in this laboretory and reported elsewhere®. Since
the beam analyzer 1is supposed to give an accurate picture of the space
charge and velccity distribution of the beam under question, it is
necessary to investigate possible aberrations which may occur within
the analyzing system. Threec kinds of aberrations will be discussed in
the following chapters.

The first chapter investigates space charge effects in a circularly
deflected electron beam. Although the magnitude of these effects may
be small in electron beams generally in use, the iniluence of space
charge 1s not more negligible in beams with very high current density.

Since all deflecting schemes must have a finite extension in space,
transit-time effects will cause aberrations which should be properly
understood. The second chapter takes phenomena in account which are
caused by chromatic aberrations in a deflecting system of finite ex-
tension.

Finally, tie third chapter makes an attempt to predict deviations
of a given density and velocity modulation if the analyzing system for
some reason or other cannot be placed at the point of interest. In
this case the analysis has to be made at a point on the beam which may
be remote from the original point of interest. How to infer from ob-
tained measurements the current and velocity distribution functions at
the point of interest will be discussed.

*Contract N6-ori-71 Task XIX, Progress Reports 9 to 14, 18, Technical Report No. 5-1.
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SYMBOLS

1) Geometrical Quantities
L Distance from deflection plane along the axis of the deflection cone
Lo a normalized quantity BA/2n sin @
R Distance from the axis of the deflection cone

x coordinate perpendicular to the axis of the deflection cone
z coordinate parallel to the axis of the deflection cone

a,t major and minor axis of the elliptical cross section of the
apparent beam

ro,r beam radii before and afte- deflection

8 deflection angle in a plane perpendicuiar to the axis of the
deflection cone

® Phase angle

a Deflection angle in a plane going through the axis of the
deflection cone

v angle between the apparent beam and the generatrix at the point
under consideration

E,n,& reduced coordinates

2) Electrical Quantities
e charge of the elsctron
mo mass of the electron
vo electron velocity in the direction of the axis of the deflection cone
B reduced velocity vo/c
no,n electron density in the beam before and afic: deflecticn
Po,p space charge density in the beam before and after deflection (p = en)
n surface charge density
I current in amperes
U Voltage in volts
ER.En,Eg.Ez electric field strength in different directions
A

free space wavelength
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1. INTRODUCTION

The first chapter i1s concerned with an analysis of space charge
effects 1n a circularly deflected electrcn beam. The necessity of an
analysis of this sort is immediately apparent when the study of pulsed
high-power beams or bunches 1s the center of inter=st. Three kinds of
aberrations will be discussed in tlie following paragraphs: first, the
radial spread of the beam during its path from the deflecting system
to 1ts observation plane, second, an angular displacement which allows
some electrons to occur at a phase differing from that to which they
originally belonged; third, an undesired velocity modulation which may
be caused by axial fields, even 1n continuous uniform circulari, de-
flected beams - an impossibility in a straight cylindrical beam

The discussion will be opened with an analysis of the geometry
involved Even with the most idealistic assumptions possible, one will
soon observe the compiexity of the problem An exact solution cannot
therefore be expected, and i1ts attempt would defeat the purpose of this
analysis, which looks for a good over-all insight into thai problem.
This insight should serve as a guide for the design of the experiment
In the course of the discussion several approximations will be made
to reduce almost 1nsoluble situations to very workable ones It 1s
believed that a more accurate study would not reveal more essential
features than a rather rough treatment would uncover.
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2 THE GEOMETRY OF THE CIRCULAR SWEEP

In Progress Reports 9 to 14 a detailed description of the "Phase
Writer" elcment of the beam analyzer has been already given Essen-
tially, the deflecting mechanism consists of two pairs of Lecher wires
placed closc and perpendicular to each other They fulfiil the purpose
of producing a rotating electric field which acts on a beam with the same
periodicity as that i1n which the beam 1s supposed to be modulated
(See Fig 1 ) This rotating electric field, perpendicular to the beam
under 1nvestigation, causes each phase incremenit ¢ to ® + A9 of the
beam to be deflected in a particular direction 9 and 8 + AP and allows
a special study of the number or velocity of the eiectrons pectarning
to this section

Since the rotating field produced by the wire system rotates with
the same frequency as that i1n which the beam 1s modulated, the important
relationsh1p can be established

a - Wt @

In other woras & and © are i1dentical 1n this system

At this point an 1dealization will be introduced Lo wvor Jor tie
moment complications discussed 1n Report 13 It will be assumed that
this deflecting mechanism can be reauced to a plane, which will be
called the "deflection plane" Aberrations caused by the finiteness

of the deflection systcm will be discussed in Chapter 1!

The deflection of an infinitesimally small section of an electron
beam of a finite diameter will take place i1n such a manner that all
electrons of this section will simultaneously obtain a velocity com-

ponent vR perpendicular to their i1nmitial velccity v,  This will resule

VR

R | |
? | |
Vo —— 2fc - BEAM - - _.@._

I)Deflechon plans

le— Observation
| plane

FIGURE 2

in a deflection of th: beam of an angle a(can a = vg/v_ ), but it wall

be such that all the electrons (considered in this geometrical section
a5 haviug uu Chatge) will remain in Lhe same plane wiiich siays paraliel
to 1ts position 1in space before and after the deflection.

-4-
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Since cach phase increment d6 of the beam will be deflected in a
different direction 6, each phase increment will travel along a genera-
trix of a cune with the opening ot 2a. However, i1f one would make a
short exposure of the beam at a particular instant, one would observe
the beam in the form of a helix wound around a cone with the opening 2a.
The general equation for this helix can easily be given. With R = vpt,
z = vot, wt = 8 (see also Figs 1 and 2) and B = vo/c, one obtains

A A
R=iﬁe=!ﬂ_e=cana39_=ex9-zana (1)
W 2nc 2nc 2n
- 8
z RA o . (2)

Introducing x = R cos 8, y = R sin 6, one arrives after simple trans-
formations at the equation for the general helix:

= . o L
) = X tan 2%
2 2
x> +y® = z° tan’a (3)
and for a particular helix at the instant

A z
0 - -2
" 2n B

(ad
[}

= x tan 2n Egéi—f

S
|

x* 4yl = (2 - zo)ztan?a (4)

This particular helix 1s shown in Fig. 3. In the xy plane of that
figure one sees, of course, an Archimedic spiral following the equation

R = ( g% tan a)B (5)
(See Eq. (1))

In the xz plane that projection 1s easily obtained by eliminating
y in (3)

x = — tan @ = z cos 2N gx tan a (6)

1+ tan” 2n &

g1+ e BX
Those helices which appear at particular time instances will be
called "the apparent beum". From the foregoing it is clear that the

electrons don’t travel along such an apparent beam. They travel along
a straight path until they hit the target.

Since in iater sections some of the geometrical quantities will
be used, they may be discussed here. One of those is an angle v in-
dicated in Fig. 3. It 1s the angle of the apparent beam with a genera-
trix at an arbitrary point of the apparent beam. A local diagram of
the neighborhood of such a point is given in Fig. 4.

6=
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Apparent Beam

RdG ' ds FIGURE 4

dL

In this figure dl denotes an elementary section of the generatrix
going through the point in question. ds denotes an elementary length
of the apparent beam, and KHd® the circular section along the base circle
of the cone at this point.

Obviously

- Bd®
tan vy Tk (7)

If the point in question is at a distance L from the deflection plane
along the axis of the cone, then

l cos a =1L

and
dl = —1 4L (8)
cos a
Introducing (8) into (7)
tan ¥ = cos aR g% = cos aR g% gﬁ.
With the following relations:
L = vot g% = v, (9a)
8 - wt a0 . (9b)
dt
R =1L tan a (9¢)




tan ¥ can finally be expressed as

tan ¥ = 2K éx sin @ (10)

From this equation and also from a glimpse at Fig. 3 one can see that v
increases with increasing distance from the deflection plane Defining
for reasons of convenience

L = —BA (11)*

O 2n sin a

tan v = L/L; (12)
Thus
cos ¥ = 1
V1 + (L/Ly)*
L
sin w = bty (13)

1/1 + (L/Ly)?

Another geometrical quantity used later will be the elementary
length ds of th:: apparent beam. From Fig. 4 one sees

Rd® = ds sin ¥ (14)

and with R = L tan @, (11) and (113) one obtains

P Y L)’ dé
ds = Bx —L— 1 L) 48 (15)

If one 1s willing to talk about an "apparent beam", 1t 1s sensible
to ask what the cross section of that apparent beam 1s. The answer
will be given with the aid of Fig. 6.

In the beginning of this section it was shown that an infinites-
imally small beam section will travel along a generatrix, but in such a
way that the axis of this circular slice remains parallel to itself and
to 1ts uvndeflected direction. Now making a cut perpendicular to the
direction of the apparent beam one will no longer see the original slice
but the projerrion of the slice to the plane of the cut. Since the
plane of the cut 1s tilted at an angle w against the axis of the slice,
and the axis of the slice 1s tilted against the generatrix at an anglea
the cross section of the apparent beam 1s an ellipse with the two axes

a =r cos @ (16)

b =rcosw (17)
where r 1s the radius of the elementary slice at that point.
®*See Figure 5 Nomoxrsoh
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The first of these two equations shows that one axis, a, remains
constant throughout the propagation process, since 7, the deflection
angle, is given by the deflection mechanism. But the second axis, b, 1s
related to the angle ¥, which increases with the distance L from the
deflection plane. Using Eq. (13) this axis becomes

b = L (18)

1/1 + (L/L,)"

This indicates that with increasing length the apparent beam width
shrinks to a thin ribbon, moving perpendicular to the plane of the
ribbon. This fact will later be a clue to a most startling paradox.

-12-
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3. SPACE CHARGE DENSITY IN A CIRCULARLY DEFLECTED BEAM

In order to compute the mutual forces which act upon tne electrons
in the deflected beam it is necessary to know the space charge density
on every point along the beam. As it has been pointed out 1in the
preceding section, each phase-increment 8¢ of the undeflected beam
will display itself in a corresponding geometrical angle A8, whereby,
by the identity of the modulation frequency of the beam and the sweep
frequency of the analyzer, A9 and A6 become identical. This can be used
as a gulde to compute the space charge density at every point of the
deflected beam, for the number of electrons pertaining to a phase incre-
ment of the undeflected beam must be the same after they have been
swept over the same increment of the geometrical angle.

Call dN the invariant number of electrons in a particular slice of

the beam, n, and n the number of electrons in a cm  before and after
the deflection respectively. Then

dN = n,dV, = ndV (19)
where dV, and dV are the volume incremenis of the beam pertaining to the
same phase increment before and after the deflectioan. The volume
increment of the undeflected beam 1s easy to determine:

dv, = nr,”dL (20)
where r_ is the original beam radius and dL an elementary length along

the z axis. The elementary volume of the deflected beam 1s, of course,
its cross section multiplied by its elementary length ds. (See Fig. 3.)
Since its cross section 1s an ellipse with the two axes a and b, this
volume becomes

dV = n ab ds. (21)

With this equation and Eq. (20), the invariance condition (19) becomes

dN = nn roadL = nn ab ds . (22)

Expressing dL, ds, a, b 1n general terms of that geometry, as was
done above

dL = g\ 42 (2)
2n
ds = A —L_A/1 + (LL)® 48 (15)
cos @ dn
a=rcos a (16)
b= /4l + (L)’ (18)

and inserting these expressions into (22), one obtains the paradoxical

result . .
ro Ny = nr . (23)

-13-
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Or, in other words, the electron density of a circularly deflected beam
changes precisely as an undeflected cylindrical beam would do.

Assuming for a moment no electrostatic forces, which would blow up
the original radius, then r would remain the same and (23) would read

n=n (24)

o

In spite of the tremendous spread of the beam due to its conical
expansion, the density of the beam i1s invariant before and after the
deflection. The explanaticn of this phenomenon lies, of ccurse, 1n
the thinning cut-process of the beam discussed earlier. This thinning
out of the beam exactly makes up for its elongation, and the volume
per phase increment and the density remain the same.

-14-




4. SOLVING POISSON’'S EQUATION FOR A SIMPLIFIED GEOMETRY

The amount of aberration of electrons in the beam from their
theoretical straight path along a generatrix of the cone can be computed

only if the forces which would displace them are known. This would
mean solving Poisson’s Equation

AV = 4np (25)°

for the geometry involved with the notion of the space charge p = en
from the preceding paragraph. This seems to be an impossible task.
It is therefore advisable to make a simplifying change of the geometry
without disturbing the physics of the problem too much. In Fig. 7 the
geometrical approximation is suggested. Consider the two open ends
A and B in 7A bent so that they touch one another and form a complete
circle (7B). The forces Ey and Eg exerted on the electrons at the

points P, and P, will scarcely change, since essentially neighboring
electruns will ccntribute to the fields at points Py and P,. Furthermore
the change in field strength at P, and P, will be very small, since
this bending actiun averages out distant forces which may stem from
the regions close to A and B. The influcnce of other cycles of the
conical helix will be neglected. Allowing this geometrical simplifi-
cation, the task remains to solve Poisson’s Equation for a space-charge
filled toroid with an elliptical cross section. Since this geometry has

|
——.' 20 |o—
4 ' R
2b '
’ pz En
T
f |
FIGURE 8

cylindrical symmetry, and o remains constant along the whole toroid,
Poisson’s equation reduces to

2
OV, 1l 2 (Y . gnp (26)
9z2? r 31 dor

*Electrostetic Systea.

-15-
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If one considers the mathematical complications by introducing the
boundary conditions of an elliptical toroid, a further geometrical
simplification is advisable. Realizing that only the most exposed
points P, and P, on the surface of that toroid are worth considering
and that *he beam soon approaches a ribbon-like shape, one will intro-
duce a rather pessimistic picture by changing the elliptical cross-
section into a rectangular one (see Fig. 9). This picture is pessimis-
tic i1n the sense that the surface fields Ey and ER in the approximated

. | |
Ea{"""’c//;ﬁ""“"nt, ' 7] 2

— ep—
E"' R 2a

FIGURE 9

picture will turn out tn be slightly higher than in the correct one and
may therefore give displacement effects which are slightly greater than
they actually would be.

The strongest use one can make of the notion of the rapid shrinking
process of the beam in the z directicn is in treating the rectangular
toroid as a ringshaped surface charge. Generally, by passing through
such a surface charge n, the jump of the field in the z direction is

1 b
given By Ey, - Ey, = 4mn (27)
Since EN, and Ey are opposite and equal

En, * Ey, = 0 (28)

the field in the z direction becomes

EN = 2nn (29)
For a thin layer with the space charge @ one can express (25) in the
form

AEN = 2nplAz . (30)

and obtain for the surface field on one side after integration over
the minor axisb of the ellipse

EN = 2npb (31)

.. . . 3’y
From (30) one can obtain immediately an expression for . for
dz
2
2%y . O . g (32)
Oz Oz
-17-
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Substituting this expression in the Poisson’s Eq. (26) one obtains

1 9¢ Qy) = 2np

r ar (J3)
Since
ﬂ =
or ER -
the first integral carried out over the proper limits gives
(R*a)ER1 (R+a)
! d(rEg) = 2np j r dr (34)
(R-a)Eg, (R-a)
or, integrated
_HRa
Eg, ,,H,)ER*‘*""R”l (35)

The field ER, pointing inwards can be defined by solving Laplace’s
equation for the center region where no space charge exists:

l -a— =
Br (l‘ Fﬂ) 0 (36)

r

The first integral gives
rEg = constant (37)

where the constant must be zero, since no field can exist at the center
of tke ring. With Eg - 0
2

and with Eq. (35) one obtains the radial field Eg pointing outward

= 4np _Ba_ (38)

ER s R+ a
The results of this section can bc summarized in a few words as
follows: with three steps of simplification of the geometry of a space
charge uniformly distributed over an Archimedic helix with an eliiptical
cross section, approximate expressions for the electric field strength

in the direction of the two axes of the cross section were derived.
They are

EN = 2n0b (31)
Eg = 4npa —1— . ' (39)
1+ 8
R
-18-
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The three steps of approximation were the following:

a) The helix was cut at the two points opposite the point of
consideration and the ends bent to a complete circle.

b) The elliptical cross section was treated as a rectangular one
with preservation of the dimension of the axes of the ellipse.

c) The field in the direction of the minor axis was computed as
1f the minor axis would be much smaller than the major one.

That these crude assumptions give quite good results even at points
of the helix where the deviations of a cylindrical beam are almost
unobservable (namely close to the deflection plane with a small deflection
angle a), shows that for R = a and for cos a = 1,

Ey = Eg = 2rer,
an expression one obtains by computing the field strength on the surface

of an infinitely long cylindrical beam. By increasing the distance
from the deflection plane, the approximations become more and more valid.

-19-
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5. RADIAL EXPANSION

After having obtained expressions for the field strength on the
surface of the beam in the two axial directions one can immediately
obtain expressions for the equation of motion in both directions.
First, the expansion in the radial direction will be discussed. Since
the major axis a points in the R direction (see Figs 8 and 10), the

ER
a
? 4
’ R
l
|
I
FIGURE 10

equation of motion of the electron on top of the ellipse reads, using

Eq. (39) for Eg,

2
mda - eEg = 4np ea -1 (40)
dt’ |
R
With
a *rcosa (16)
2
P = 0o 5%; (23)
r
R =1L tan a (9c)
L= vt (9a)
Equation (40) becomes
2 2n 2
dr . p:e o . 2 ’ (41)
dL mv, X 1]+ Kk cos @&
L sin a
-20-
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Introducing the new variables
n =r/rg
(42)
E = L/L,
and the constants onp
A= (43)
MoVo
2
- cos @

the differential equation (40) reduces to

“L24 .1 _1_
n Le N 1. ? (45)

An exact solution of this cifferential equation can only be given with
numerical integration. However, a very good approximate solution can
immediately be obtained by considering the fact that almost always
€ >>n. In other words, n/Z can be neglected in comparison with 1 and
(45) reduces further to a differential equation of the form

n =kl
n
Fortunately, this equation is solved in almost all textbooks concerning

electron beams®, because it is the equation governing the spread of a
cylindrical electron beam. The solution for this particular problem is

n
L = 1 J _dn (46)
2VA J  VIan

where graphical and nomographical solutions are given elsewhere®. The
difference in the usual beam spread formula i1s that the spread of this
helical beam occurs only outward and is about v2 times larger than in
the cylinder beam case. The reason for the factor v2 can easily be
found in the fact that in approximating Eq. (45) by neglecting n/& one
always integrates over a n" larger than it actualiy would be, if one
considered the factor

*See. for example, Spengenberg ‘Vacuum Tubes”, McGrew-fiill, 1948, p. 441.

7
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Since subsequently constant use will be made of the quantity A,
a more practical expression will be derived with

O ot ,..,M-M“j

I
Po = —3—
o Yo
vg ﬁ i
B = vo/v.
A becomes
I
A=1.18x10"* -4 . L (47)
R% e
= (o]
or
A-4.7x10 mA. 1 (48)
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6. ANGULAR DISPLACEMENT

More interesting and significant for a device which is built for
an analysis of an RF modulated beam than just a little beam spread which

would only increase the beam spot and could have been easily anticipated

anyway, are aberrations wnich are caused by the electrostatic field
pointing in the direction of the minor axis b of the ellipse - in otuer
words, caused by the field Ey, which lies in a plane parallel to the

axis of the cone and normal to the helix. Drawing in detail the geomet-
rical situation of the neighborhood of an electron where Ey exerts its

Direction
of motion

FIGURE 11

force (Fig. 11, see aiso Figs. 3,4,6), one can immediately recognize
two facts:

a) The fields En, and Ey, acting on two opposite electrons of the

same original beam slice have the tendency to tilt that slice so that
it does not preserve its original direction but tries to adjust 1its
axis to the axis of the apparent beam.

b) The field Ey on either side of the apparent beam can be split

into two components. The one, Fg5, pushes the electrons out of their

original angular location into regions which should be occupied by
electrons belonzing to this region only, thus causing an angular dis-
placement. The other one. E7. pushes the electrons in the forward or

-93.
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backward direction (depending on whether one looks at the front or the
rear portion of the apparent beam) thus causing an additional velocity
modulaticn in tie direction of the axis of the cone. In this section
only the angular displacement will be discussed.

For the field in the tangential direction, Eg, one oktains with
Fig 11

Eg = Ey cos v. (49)
With
EN = 2rob (31)
2
r
b=r cos v (17)
cos w = 1/V] + 1[7[055 (13)
2
i (43)
MoVo
L= vt (9a)
m, d’r
Eg = 2 '—j; (50)
€ de
Equation (49) becomes
2
dr .4t 1 (s1)
dL’ r o1+ (/L)
Since one 1s interested in the actual displacement x = r - r/
(see Fig. 12),

_ — Anis of Sirg
or
| ™ o,
FIGURE 12 Ea o
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new variables will be introduced:

n = x/r,
(52)
g = L/L,
With these variables in Eq. (51), one obtains
- 2 _1 . 1
l n ALO 1 4 n l " EQ (53)

This differential equation does not occur in literature and should be
solved numerically. But one can immediately find a good approximation
of this differential equation for that particular physical problem by
remembering that for short distances (£ not much larger than 1) the
displacement n will remain about zero, or at least n << 1. Using a
solution for n for short distances £ one can introduce n into Eq. (53)
and solve for large &, where £ >> 1. With this program in mind Eq.

(53) becomes
~ n" = AL’ —1— (54)
1 + &7

Double i1ntegration with the limits

n=0
for E=0 (55)
n=0
gives :
n = AL,® (€ arc tan £ - % ln (1 + E7)] (56)

To correlate the displacement x = nr,, expressed in units of length,

with the angular displacement A8, expressed in radians, one has caly to
introduce the identity

x = RASB. (57)
With
R =1L tan a (9¢)
g = L/L,, n = x/r, (52)
this becomes L
n=-2¢£A0 tan a (58)
To

Expressing n in Eq. (56) in terms of the angular displacement wish
(58), the displacement angle A8 becomes

AL 2
A8 = 2ofo [ arc tan & - Lnilié—&—l ] (59)

tan a

-95.
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If, for convenience, one defines the function of £ in the above equation
1n the following way

F(&) = % (arc tan & --lnilié—g:l ] (60)

the displacement angle A6 can finally be expressed in the form

. Ayl F(E)

tan &

(61)

The function F(E) is plotted in Fig. 13 As one can see, for & ap-
proaching infinity, the function approaches the value 1. And further-
more, this asymptotic value 1s approximately reached quickly for small
values of £€. Physically this means that an edge electron belonging to
a phase 6 and pushed by the force~ of the Ey field will creep into

other phases until 1t reaches a particular phase 8 t A8, 1n which 1t
will stay forever A8, 1s given by

r0, = AloTo . x (62)
® tan a 2

To express A8, 1n more convenient units, the following relations,
already derived, will be used

A-1.18x 10 1A . _L (47)
3 2
B ro

bo * 5xein s (n

One thus obtains two equivalent equations for AB,, where either one can
be used at convenience.

(a0,) . - 205 x 107 1A & (o5 q (63)
Radians B?
A8° = 0.42 IA 2 s g (64)
To

With these expressions tils section is not quite finished, for, as 1t
was pointed out earlier, a better solution for the differential equation
(53) could be obtained using the solution for n from Eq. (56) as a
first order approximation, inserting this result into Eq (53), and
1ntegrating again. But by doing that, little would be gained. One
also obtains a limiting displacement angle which i1s defined by

pss - AloTo (65)

tan a
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This angle is smaller than the one obtained in Eg. (62) by a factor of
2/r.  The true angle will probably lie between the two. But, inclined
to rely more on pessimistic results, the d:splacement angle as derived
in Eq. (62) or (63) and (64) wili be used in further work.

Example:
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7. AXIAL VELOCITY MODULATION

As it was pointed out in the preceding section, due tc the axial
component E7 of the Ey field (see Fig. 11), a velocity component in the

direction of the axis of the deflection cone may be superimposed on the
electrons moving with a supposed constant velocity v, from the deflection

plane to the observation plane. Electrons accelerated or decelerated in
this way would cause no trouble if the only problem were to locate them
properly with respect to their original phase angle. The only possible
trouble would arise if one made a velocity analysis of a particular
phase increment A6 after the electrons are circularly spread and shot
through a velocity analyzer, provided in the beam analyzer built in
this laboratory.

In this case one would observe velocity spreads of electrons which
originally had exactly the same velocity. To estimate this aberration
due to the space charge action of the circularly deflected beam one has
to set up the equation of motion for an edge electron moving in the
direction of the axis of the cone.

Referring again to Fig. 11 one can immediately write down the field

in th direction:
in the z direction E, « Ey sin v (66)

]

With
Ey = 2nob (31)
b=rcosw (17)
2
b = po -2 (23)
r
L= vt (9a)
5 = 220C° (43)
MoVo
2
E, - 2 dz (67)
e dt
equation (66) becomes
2
2
dz -5 sin ¥ cos ¥ (68)
dL? r

The two variables occurring in the above equation, r and z, can be
corre’ated with the aid of Fig. 14. From this figure one reads

. *r_, tan y

o o
z® = r tan ¥ (69)
2® = z_+ 2
and thus °
r=r,+ —&— (70)
tan ¥
-929.
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FIGURE 14
Replacing r in Eq. (68) by expression (70) one obtains
d’z . ArOQ tan ¥ sin ¥ cos ¥ (71)
dL’? ro, tan v + 2z
Introducing the new variables
z/r, = C
° (72)
L/L, = &

and using the expressions for sin w, cos ¥, and tan w as they were given

in Eqs. (12) and (13)

L
sin v - /Lo
e W)’
(13)
cos ¥ = 1
Vl + (L/L)"
tan v = L/L (12)
the differential equation (71) reduces to
e = ALT . o 4 (73)

L E g,

Again this differential equation does not occur in literature and must
be solved numerically or graphically. One can, however, find a reason-
ably good approximation by neglecting £ with respect to & in the denom-
inator of the first term in Eq. (73). Physically it means that the
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displacement in the z direction will be very small in comparison with
the distance from the deflection plane. Since this 1s actually the

case, (73) reduces to
¢ - AL —E— (74)
1+ £?

and the first i1ntegral gives

Z'c AL," Ing/1 4 £ (75)

Going back to the oid variables z and L as defined in (72) and expressing
£’ in terms of the relative velocity spread,

Bvy .1 dz . 8B (76)

o Vs dt R

(75) becomes

A - ALy, 1n A (L/L)* (17)

B ofo
The coetficient of the logarithm is a dimensionless product. It can
be recognized as
g A8, tan a (See Eq. (62)).

Expressing A6, conveniently accoraing to Eq. (62) one obtains for the
relative velocity modulation of the circularly deflected beam behind the
deflection plane the expression

AB I

—2 - 1.88 % 107° A A gina 1n V1 o+ (L/L,)? (78)
B B? o

Two features of this formula can easily be seen:

a) For zerc deflection angle, @, the velocity spread 48,/ B becomes

zero, because sin @ goes to zero. In other words, a straight undeflected

cylindrical electron beam produces no velocity spread in the z direction

b) The velocity spread increases slowly with increasing distance
L from the deflection plane, viz. only with the logarithm of L.

Example
I = 100 mA

Fo = Lam 252 - 5.6 % 107

10 cm B
60

20 L,
0.1

R >0
[} ] " 1] n

Since

in this example
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CHAPTER 11
CHROMATIC ABERRATIONS IN A DEFLECTING SYSTEM OF FINITE EXTENSION
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x,y
E,n
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A6

P,y

SYMBOLS

constants, defined |y the geometry of a single pair of o Lecher system
electric fields on the X and Y deflectors .
distance deflector-screen

electric power fed into the deflector

radius of the circle of the circularly deflected beam

beam voltage

zero radial displacement voltage

major and minor axes of an ellipse

eccentricity of an ellipse

axial displacement and radius of a single pair of a Lecher system
aperture of a Lecher system

spacing of two Lecher systems

coordinates of an electron hittiig the observation plane
coordinates at 45° angles with x,y

transit angle of an electron traveling between two Lecher Systems

transit anrle of an electron traveling witi the velocity of the beam
voltuge between the Lecher systems

an angular displacement

ptiase of the oscillating X-deflector

a tunable phase

an unadjustable phase angle

deflection angle between the undeflected and deflected beam

the apparent deflection in a plane perpendicular to the undefiected
beam
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1. INTRODUCTION

To distinguish aberrations which could stem from different causes,
the assumption of an 1dealized infinitesimally thin "deflection plane"
was made 1n the preceding chapter. This 1s, of course, not true. Every
realizable deflection system must have a finite extension to allow the
deflecting forces a finite time to accelerate the particle in the
direction of the force. In the particular case of the "phase writer
system" of the beam analyzer, the extension of the system is given by
the distance of the two pairs of the Lecher wires which provide deflec-
tions 1n two rectangular coordinates. The effect of this extension on
electrons with different velocities (polychromatic electron beam) nas
been briefly touched upon in Progress Report 13 of this contract. In

the following pages a more detailed account of this type of aberrations
will be given.
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2. RADIAL DISPLACEMENT

The piinciple of the deflecting mechanism consists of two pairs of
shorted Lecher wires, placed perpendicular to each other and excited
in such a manner that the maxima of the standing waves on both wire
pairs fall on the cross point of the pairs. The electron beam is shot
through the little square-zhaped window which is formed by the edges of
the wires. (See Fig. 1.) If the two wire pairs are sufficiently far

—.l’l o x - Deflector

IR I

| BEAM

BEAM ] o [ = =

x- Deflector

SIDE VIEW FRONT VIEW
FIGURE 1

apart (about twice the spacing of the two wires in either pair), then it
1s possible to excite each part independent of the other. Using the
first deflecting system as deflector in the x direction and as a refer-
ence plane for the phase at any point along the beam axis, the field at
the cross point will follow the expression

E, = E,o cos @ (1)
The field for the Y deflector may be expressed by
Ey = Eyo sin (9 - 9,) (2)

where 9, 18 an adjustable phase difference between the X and Y deflector.

Now consider an electron passing through the X deflector. As
was shown 1in Progress Report No. 12, it will be deflected at an angle,
the tangent of which is proportional to the instantaneous field on the
wire. Thus an electron passing the X deflector at a phuse angle @ will

hiit the ubservaitlon piane at a point with the coordinate

x = R cos 9. (3)

-3§.
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The same electron has to pass the Y deflector, but will do so a little

later. Let the phase difference of the arrival of the electron at the X
deflector and Y deflector be

b = wty = 2n Al ¢ " (8)
) R
where

syp 1s the spacing of the two wire pairs

¢ 1s the velocity of light
v 1s the velocity of the electron,

and let the magnitude of the oscillating fields and the two pairs be
exactly the same--a condition easily realizable in any particular system

Eyp © By (5)

Then the deflection in the y direction will follow the equation

y = Rsin (9 - 9, + ¢,) (6)

Since @, 1s an adjustable phase difference, 9, can be adjusted such that

Q1 = Py (7)

and a uniforin electron beam will display 1tself on the observation
screen as a perfect circle following the equation

x = Rcos o (8)
y =Rsing

Assume now that the electron beam would not be a monochromatic one, 1 e.
a beam consisting of electrons having one and only one velocity, viz
Vo,. but would consist of electrons having velocities v spread over a
range between v, + Av and v, - Av For those electrons the phase

difference of arrival at the X aid Y deflector would be

o I __c
$1 AT S Ti Ay (9)

Assuming Av << v, and expanding the denominator one obtains

¢ =2on AL < (1 ; by (10)
A N Vo
and using (4)
4’1 = P10 * ¢1o A'!, (108)
Yo
where
$1o = 2n AL < (11)
A Vo
-36-
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Inserting the phase difference ¢, into Eq. (6) for the y deflection, the
y coordinate becomes

y =Rsin (9 - 93 + 3,0 F 940 ex)- (12)
o
Although it 1s possible o compensate ¢,,, by adjusting ¢, so that
P _¢10 = on

it is impossible to compensate for the piase spread ¢, el, because any
o

Av can occur at any instant @. Adjusting for ¢,,, Eq. (12) becomes

y = Rsin (9o ¥ ¢, e'(!,) (13)
with the unadjustable phase
‘ 55 % o {2 (14)

The existence of such an unadjustable phase angle 5 is due to two causes:

a) the polychromacy of the beam; for, if the beam were monochro-
matic, Av = 0, then & would v.nish.

b) the finiteness of the spacing of the two wire pairs, for, if s[I
wvere zero, ¢, would be zero (see Eq. (4)), then 6 would vanish.

Tuerefore the existence of 6 is due to a chromatic beam deflected by a
deflecting system of a tinite extension. The effect of the existence of
6 can be seen immediately.

Consider again an electron passing the X deflector at a phase angle
9 and having a velocity v, - Av. It will be projected 2t a point P on

the screen (see Fig. 2) with the coordinates

x = R cos ¢ (15)
y = R sin (¢ + 8) (16)

Electrons arriving at any phase @ at the X deflector will define the set
of all points given in Eq. (15) (16) with ¢ as the parameter.

It can easily be shown that these points define an ellipse, the
axes of which make a 45° angle with the coordinates xy. The major
axis, the minor axis, and the eccentricity are defined by the following

relations
a=RV1I +sind (17)
b=RW - sin & (18)
e = RV2 sin & (19)

See Fig. 3 and Appendix A.

Fer evaluating Eqs. (17) and (18) most conveniently, a nomograph is
included (Fig 4), which makes it possible to determine a and b if

bv/v, and ¢, are given, or, if 2 aid b are measured irom a particular

-37-
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FIBURE 2

ve Av

FIGURE 3

N

THE Locus ©F ALL POINTS DEFINED BY ARRIVING ELECTRONS

HAVING A VELOCITY v =
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experiment, to determine the velocity spread Av/v,. To have ¢, easily

available, this nomograph also makes it possible to determine ¢, immedi-
ately, if v, and the geometry of the system, viz. syj/\ are given.
For electrons having a velocity v, + Av ("fast case"), the locus of

all points of their arrival will be an ellipse perpendicular to the

former one, but with precisely the same a and b as in the "slow case"
(v = vy = Av).

An electron beam with electrons spread over the range v = v, % Ov

will thus project itself on the screen on an area which is limited by
the two crossed ellipses and the fundamental circle as indicated 1in
Fig. 5 This picture shows that even for an 1deally focused electron

N\

Fast

FiGukt 5

beam the observed beam width can be quite large. The maximum apparent

beam width on the screen occurs along a line making a 45° angle with the
x and y axes

Its width can be used to approximately determine an
inherent velocity spread. Since the maximum apparent beam diameter,

op’ 1s the difference of the major and the minor axes of the fast and
a

-40-
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the slow ellipse, from Eqs. (17) and (18) an expression in terms of the
velocity spread can easily be established. Defining
dII
app

and inserting from (17) and (18) the expressions for a and b, after

simple trigonometric transformations one obtains for the apparent beam
diameter

=a-b (20)

dII = 2R sin & (21)
app 2

II
Since d and R are directly measurable, 6 can be found from Eq. (21).
app

With 6 = ¢, Qv (14)
Yo
and
v = kU%
1
dv = % kUA du
v - 14U (22)
vo 21U, '
the velocity spread expressed in electron volts becomes
qIT
AU - 4 ,rc sin PP (23)
U, o 2R

In the preceding pages there was, of course, no suggestion to use
this method of measuring the beam width to determine accurately the
velocity spread in an electron beam. The sole purpose of this consider-
ation was to give this phenomenon, which eventually could occur, a prop-
er interpretation, and also to give the experimenter a hint to estimate
an existent velocity spread in the beam. Means of accurately deter-
mining the velocity spectrum of an electron beam have to follow entirely
different lines. (See Progress Report No. XIX-14.)

This section, dealing with chromatic aberrations of an electron
beam deflected by a system of finite extension, would not be complete if
the influence of ithe finiteness of a single wire pair, say the X deflec-
tor alone, were not studied In fact, the deflection sensitivity of a
single pair of wires shows a dependency of the velocity of the injected
electrons. In Progress Report No. XIX-12 this influence was reported
and studied. If one calls

2 the deflection anglc of the injected beam

P the power delivered to the wires
then the sensitivity of a single pair of wires follows a formula of the

form A e-B/VU

tan a = VP B (24)

-41-




R 7R T

where U is the velocity of the injected electrons expressed in electron
volts and A and B are quantities defined by the geometry of the wires.

2 07 A
A = a (25)

/1 +475x107 2 [N
*

B=510°‘;_1,/1+4b— (26)

2

The symbols 4, b, and D, used in Eqs (25) (26) are explained in Fig 6

FIGURE 6

— 2b —

Equation (24) 1s plotted in Fig 7 for a particular system which
was built and experimentally checked in this laboratory

Since tan a = R/L. (see Fig 3, of the preceding chapter) and
during a particular experiment the power, P, delivered to the system and
1ts geometrical dimensions air kep* constant, Eq (24) can be trans-

-42-
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formed into a statement about the relation of the radius R of the
circularly deflected beam on the screen and the velocity of the elec-
trons at the deflection system
R-K (27)
U
where K = ALVP is a ccnstant

Differentiating R with respect to U gives the variation cf the
deflection radius with respect to a velocity change

R-_ K BV g BA B 28
du UQC +Ue (21?;) ( )

Using Eq (27) again one obtains the relative radial displacement

aB . AU ( B ) (29)
R Uo 2“0;

For a particular voltage Us the radial displacement vanishes 1f

B =, (30)
2vVU.
This defines B’ in terms of a voltage and (29) becomes
AR .U fUs (31)

R U, ],

Us 1s directly connected with Eq (26) through Eq (30) and thus 1s
predetermined by the designer Reasonable values of Us turn out to be
in the neighborhood of about 500 volts (see Fig 7) Since electron
beams are usually operated at somewhat higher voltages one will find
oneself on the right hand side of the curve, where increasing velocities
decrease th: sensitivity of the system But even at about 3000 volts,
the loss 1n sensitivity 1s not too strong and can still easily be
compensated by an increase of the power P fed into the system

Let us consider again a velocity spread of #Av In a similar
manner as before an apparent beam diameter d!  can be defined due to a
app

change 1n the deflection sensitivity of the system This beam width
would occur even for an 1deally focused beam Assuming one operates
with velocities above the zero displacement voltage Us and defining

I
d = 2AR (32)
app
one obtains with (31)

) (33)
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This equation descriktes an apparent beam spread due to a finite
extension of a single deflector, and is exactly the equivalent of
Eq (21), which predicted a beam spread for a system consisting of
two such deflectors with finite spacing.

It may be interesting to compare their influence on the apparent
beam diameter. Allowing the approximation

siln z Vv z

for small z, Eq (21) becomes

II
d = Ro, AU (34)
app 2U,
Defining a quantity 11
: d
x = diameter for double system - _app (35)
diameter for single pair dl
app
and using Eqs (33) and (34) one gets
=P (36)
2(1 - /U,

To arrive at a more convenient form for x, Eq (11) for ¢,0 and Eq (30)
in combination with (26) for Us may be used x finaily becomes

2s
LR | (R E———— (37)
I iva b vyl
1 I .

This equation contains only geometrical quantities and the applied beam
voltage in units of the zero displacement voltage Us
For a practical system e g ,

sI =15 mm U, = 1000 V
= = ) \/
SII S0mm Ue 500
b=10mm
one obtains
x = 3.5

This i1ndicates that the apparent beam spread due to the sbacing of the
two deflectors 1s 3.5 times greater than a beam spread due to the change
in sensitivity of a single deflector, independent of the velocity spread
AU

For experimental confirmation of the described phencmena see
Appendix B
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3. ANGULAR DISPLACEMENT

In the preceding section it was shown that due to a finite distance
between the X and Y deflectors an electron Av faster or slower than the
average electron in a b»am will i1mpinge on the screen, not on a circle
drawn by the average electron, but will be somewhat displaced. Having
already computed the radial displacement of such electrons, in this
paragraph the angular displacement may be considered. By angular
displacement one has to understand again the phenomenon that an electron
belonging to a particular phase increment, say @, will show up on the
screen 1n a phase increment, ¢ + A¢, different from the one to which it
belonged when it entered the deflection system The quantity A8 will be
computed here

As 1t was already pointed out a velocity spread of tAv will produce
two ellipses on the screen with the equations

x = Rsin ¢ (15)
y = Rsin (9 + §) (16)
where 6 1s defined as
8 =I¢aoA‘! (14)
Yo

The sign of 5 determincs the position of the ellipse
With the aid of Fig 8 the significance of the angular displacement
in this context can easily be observed Instead of being projected on

}
y
P

o

4+

&

Cc

‘O Po

x
¢ —
Rcos ¢ X

FIGURE 8
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point P , if the unadjustable phase angle 6 is not zero, the el=ctron
arrives at point P, causing an angular displacement A8.
With Fig. 8 the following two relations can be derived:
tan Y = y/x (38)

A8 =y - @ (39)

Inserting for x and y the expressions (15) and (16), eliminating y with
(39) and solving for AB, one obtains after simple trigonometric trans-
formations

tan A9 = in 5 - = 6 (40)

1 + tan’ @ cos 6 + tan @ sin b

The above equation is already the answer to the question of the angular
displacement. It shows the dependency of AO on the original phase angle
and the unadjustable phase ¢&.

It 1s interesting to note that tan AB, and thus A6, can vanish.
This is the case 1if

a) the denvminator goes to infinity
b) the numerator goes to zero
The first condition is fulfilled 1if

tan ¢ = @

or
= ¢ I 41
P 9 (41)

In other words, no angular displacement occurs at the y axis The
second condition is fulfilled 1f

sin & = tan @ (1 - cos 6) (42)

Solving for tan @, one obtains after using the trigonometric relations
ior half angles

K _

tan @ = tan ) (43)

N
N 1O

g+ ¥ {=+=8). (44)

The following graph (Fig. 9) and the sketch (Fig 10) show the
angles along the circle where no angular displacement occurs.
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APPENDIX A
Eliminate ¢ from the equations

x = Rcos ¢ (15)

y = Rsin (9 + ) (16)
With

sin(9 + ) = sin @ cos 5 + cos @ sin 5

and . .

cos” 9 = (x/R)

sin” ¢ = 1 - (x/R)*
one obtains . . . .

y - 2xy sin 5 + x° = R cos  a (A1)

Introducing a new coordinate system £, n, which makes an angle y with
the xy system, the following transformation can be established: (see

Fig. Al)

FIGURE Al

.x = £ cos Y - n sin y (A2)
y “necos vy + Ff siny
For vy - 45°, (A2) becomes
V2 x = E - n

-49-
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Adding and subtracting gives

£=L (x+y)
V3
- Ly - (
n A4
/iy x )

Defining in the new coordinates £, n an ellipse:
& @=L (AS)
a b

and expressing £, n in the old coordinates by using transformation (A4)
one obtains

x2_2n2 __,b_2 xy‘-y’ ._23_11__2 ? (A6)
a’ + b’ a’ + b’
Comparison with (Al) gives
sin 6 - &= b° (A7)
82 . b2
2. 2
K cos’6 = 28 b (A8)
a’ + b’
With
cos’8 = 1 - sin° & one obtains
cos 6 = —<2 ab (A9)
a’ + b’
thus > .
R Vﬁz—*b- (A10)
Solving for a and b, one gets immediately
a=R V1 +snb (17)
b=R vVl - sin 6 (18)
quod erat demonstrandum.
With €° = a” - bz, the eccentricity 1s found to be
e =R v2 sin 6 (19)

i i
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APPENDIX B

In Section 2, "Radial Displacenment”, two different causes for the
radial spread of a polychromatic beam were mentioned and treated sepa-
rately, namely, displacements due to the finiteness of a single deflector
system, and displacements due to a finite spacing of the two deflectors
In actual operation, however, both effects will act simultaneously on
the beam and will be superposed .

With the preceding discussion in mind 1t 1s not too difficult to
anticipate what will happen  Suppose the system 1s set for a perfect
circular display of electrons having a velocity U, All electrons
having a somewhat higher velocity, say L, + AU, will flip into their
ellipse, denoted as the "fast case", but will at the same time suffer
a decreased defiection due to the decrecased sensitivity of the single
system for higher velocities. Since the ellipse for the "sluw case"
1s perpendicular to the "fast case", electrons with a smaller velocity,
say U, - AU, will display tunemselves along an ellipse with increased
sensitivity for slow electrons The refe-ence circle for both cases 1s
directly predictable with Eq. (24) and thus the combined effects can
be visualized easily, as 1s done i1n Fig. Bl. Three monochromatic
electron beams are displayed, witi velocities Uo' U .+ AU, and U, - AU.
The system is adjusted to a circle for electrons with the velocity U,.
The 1ncrease and decrease of the single system sensitivity 1s taken
1nto account by drawing the ellipses 1nto the two reference squares
U, + AU and U - AU

To compare this theoretical picture with an actual display on the
screen of the analyzer, three successive exposures of a monochromatic
e lectron beam having the velocity of 2000 volts, 2000 + 200 volts,
and 2000 - 300 volts were made on the same negative The system was
adjusted to a circle at U, - 2000 volts. The result 1s given i1n Fi1g. B2
and shows a good correspondence with the theory

In Fig. B3 a .polychromatic beam i1s shown having electrons with all
velocities from 2000 - 400 volces up to 2000 + 400 volts. The circular
adjustment was again made at 2000 volts. This picture drastically shows
the effect of a velocity modulation on the "apparent beamwidth'.

Figures B4 and BS are again superpositions of four monochromatic
beams, where the former shows the effect of increasing the beam velocity
until the phase angle ®;, between the two deflector systems decreases
precisely n/2 to degenerate tie ellipses into a straignt line. The
latter shows very markedly tne eifect of tne i1ncreasc of sensitivity
by decreasing the velocity. Here too, tune velocity was chaneed until
the phase angle between the two deflectors was 1ncreased to the amount
®o, + /2

In all puotographs the frequency applied was 3000 M cycles/sec.

o il
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FIGURE B2 SUPERPOSITION OF THREE MONOCHROMATIC ELECTRON.
BEAMS HAVING THE VELOCITIES
Uy = 2000 VOLTS

Up + AU = 2300 VOLTS
Uy - AU - 1700 vor T<



FiGURE B3 POLYCHROMATIC ELECTRON BEAM WITH VELOCITY MODULATION
U = 20C0 + 400 VOLTS

CIRCLE ADJUSTED AT 2000 VOLTS
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FIGURE BS

SUPERPOSITION OF FOUR MONOCHROMATIC ELECTRON
BEAMS HAVING THE VELOCITIES
Ug = 2550 VOLTS  (CIRCLE)

2250 VOLTS

c
"

= 1700 VOLTS
1230 VOLTS (LINE)

c
BN
[} "

TOTAL PHASE CHANGE IN THE SYSTEM n/2

- 56



T i T s e, S . . e i e S A e P - ——

| CHAPTER 11T
| BEAM ANALYSIS WITH A REMOTE ANALYZER SYSTEM

-57-

s

e



G G
Ep By

de,dNe

ho.h,h’,h"

F'§ ”
r.,r,r ,r

Pa

SYMBOLS
a dimension constant
dimension constants pertaining to h and r expansion
electric fields in the h and r direction
number of electrons

number of electrons pertaining to a phase increment ¥ and
¥ + dy or a deflection increment 6 and 6 + d6

instantaneous and average electric current

electron charge

electron mass

electron velocities

a proportionality constant

distance of observer and point under observation

initial height of a disc and its first and second derivatives
initial radius of a disc and its first and second derivatives
either ho,h,h',h" or ro.r,r',r".

. . . . . = -1
asymptotic velocity in the h direction in cm sec  and
electron volts

. . - . . . -1
asymptotic velocity in the r direction in cm sec  and
electron volts

time
driftspace phase angle for electrons having velocities v,v,
starting phase angle

arrival phase angle

adjustable phase angle 1n deflector

Distribution Functions

My (6)

Ne(V)

m{6)
n(y)
uv(Av)

Ve(ﬁv)

anguiar distribution funct:ion of electrons originating at a
starting phase w

phase distribution function of electrons which have accumulated
at a deflection angle 6

density distribution function aloug the deflection circle
density distribution function along the starting phase

velocity distribution function of the de electrons
pertaining to the phase element v

velocity distribution function of the dNy electrons
pertaining to the angular deflection element 9

-58-
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2. DEPHASING OF VELOCITY MODULATED ELECTRONS

Suppose that there are two points along the axis of an RF modulated
electron beam, x and x , and that electrons starting with a phase y at
x, will arrive at the point x' when the analyzer placed at x' is in a
phase state ¢ + @, (see Fig 1) The phase 9, is supposed to be a con-

X x!

ean 7 0 A

¢ -

FIGURE 1
14 P +9,
stant and adjustable phase angle, controlled within the circuitry of the
transmission line Between the starting phase ¥ at x and the arriving
phase ? the fnllowing relation can be set up

Q*rQ TP+ uw (3)
where ¢ 1s the phase angie of the drift space between x and x°
®=onk —X ¢ (4)
A v

Defining an average beam velocity v

and restricting oneself to
small velocity deviations Av, so that

(o}

Av <, (5)

Yo

then the drift space phase angle ¢ becomes

¢ = 2 =X (1 -4y (6)
AVO )
Introducing
¢, = 2m S- (7)
Avg
S = x' - x, (8)
Equation (6) changes to _
¢ < b, -, A (9)
Yo
-60- .
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Inserting Eq (9) intc (3) and adjusting 0, such that 9, = ¢,, the
relation between v and ¢ becomes
® = w - ¢ QY (10)

Yo

This equation permits an important physical interpretation. Suppose the
beam under investigation consisted only of extremely sharp bunches fol-
lowing each other at time intervals of one period and starting at x with
a phase angle v = 0 The density function n(v) of such a modulated beam
1s ind;cated in Fig 2

\
n(v)

' 4

() r 3nd a7 (3 4
FIGURE 2

Suppose . furthermore. that the electrons in each of these bunches
had a velocity spread tAv  The electrons 1n this bunch would have

spread at x' from ¢ = -¢, Al to @ = +P, Ai Since to each phase angle
Yo

® at the deflector corresponds an angular deflectxon 0 (see Chapter I),
this buanch would appear as a section of a circle, spread over an angle

This linear relationship between A8 and Av can conveniently be used to

calibrate a deflection circle directly in terms of velocities, where
the velocities can be cxpressed i1n electron volts

Av - 1 AU
Yo 2, (12)
Equation (11) becomes
AR® = 18 x 10° 8 Uy~ “% AU (13)
For a particular and reasonable example, e g
S=5c¢cm
A =10 cm
Uy = 2000 volt
-61-
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Eq. (13) reduces to
A8° - 6U/volts

and the deflection circle can easily be calibrated (see Fig. 3)

(o]
0 420
+30
+40
+50
460
-70 +70
-80 +89
-90 +9C
-Av/ VOLTS ) +Av/VOLTS
FIGURE 3

The interpretation of this figure 1is simple  Assume two electrons
passing the point x at ¥ = 0 and having velocities 2010 and 1980 volts
They will project themselves on the circle ac the points +10 and -20
This technique can be used tc corstruct a very accurate velocity ana-
lyzer In this context, however, the phenomenon qualifies itself as an
aberration

In this particular example a very specialized beam type was assumed
A beam consisting of'a series of infinitesimally smail bunches 1s a
desirable feature, but unfortunately a rare exception For usual cases
a more gencral treatment seems therefore necessary. Sufficient general-
1ty 1s guaranteed by assuming the beam at the point x is periodically

modulated with an arbitrary density function n(w). “ithin a phase
element v and vy + dy there will be dN electrons defined according to
Eq (2)

d dN, = n(v)dy (14)

The index a in Eq (2) can be omitted, for only this point will be
considered

-62-
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The question now arises as to what way this velocity distribution
function will map 1tself on the observation plane In other words,
what will the angular distribution function look like, i1f the velocity
distribution is given? Since the angular deflection angle 6 1s identi-
cal to the phase angle ¢ at the point x', either 8 or ¢ can be used

to define such a distribution function Let us choose 6; then an
angular distribution function
g) = ( ¢WdN) ) (16)
Mol = ¢ dé v

can be defined which describes the distribution of those electrons along
the deflection circle, which originates from a starting phase ¥  (See
Fig 6 ) It is now necessary to transform the up-function into the

My (6) *

” A’a

FIGURE 6

M-function. The link to this transformation is Eq (10) which corre-
lates @, and v Using the identity

o = 8, (17)
then 0 = w-do Y (18)

Differentiating 6 with respect to Av and keeping ¥ constant correlates
the angular increment dO with the velocity increment dAv. One obtains

e = - = dAv (19)
(o]

Dividing this equation by ddN and inverting it, one gets

d(dN) - _ Yo d(dN) (20)
dé @, d(av)
Using the definitions for u and M from Eqs (15) and (16), Eq. (20)
becomes v
M, (8) = - -2y, (av) (21)
%o
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The transformation would be completed if the argument in both functions
were the same. Using again Eq (18) to express Av in terms of 6

Av = ;g (v - 8) (22)

and introducing this in (21), che transformation is completed and reads
6) = - 8, (2 (v, - 8)) (23)
MVx( é, Hyy &, 1

The index 1 in ¥ indicates that this is the angular distribution of
electrons originating from a particular phase angle w,. It is inter-
esting to note that the original distribution function u is completely
preserved in its form; only the x and y coordinates are stretched with
the factor v,/¢, to compensate for the change of dimensions, and the

whole function is shifted along the 6 axis with the amount w,

Equation (23) immediately gives an answer to the question: How
many electrons from an arbitrary starting phase v are contributed to a
particular deflection augie 6?7 The answer is

Mv(ex) = - ; u,( é? (w - 64)) (24)
o o

To know how many electrons from all phases w are contributed to a
particular deflection angle Y, one has only to integrate over the M-
function

) v 6 v
w(®) = [ My(0) dv = - 22 [ u,,(;:(v-e) My (25)

(o]

In this m-function one meets the counterpart of the originally
introduced n-function. If n(v) is the density distribution function
of the electrons along the starting phase w, the function m(6) gives the
density distribution function of the electrons along the circle. The
m-function is that which one observes. m(6) is the number dN of elec-
trons arriving within a deflection angle increment 6 and 6 + dO on the

observation plane (see Fig. 7)
-_.

m(8)
é

/‘\

-8

- o] -+&;&- ¥
d

FIGURE 7

-65-

2
\
<

M. SR A i



TN W ST (I IR

.».«..A-nm«nMUﬂwm l

Using a small angular aperture (Fig 8), m(8) can easily be meas-
ured by measuring the current passing that aperture From this bit of

Aperture Disc

Beam

FIGURE 8

information it 1s possible in principle to recalculate the original
density distribution n{w) and the velocity distribution functions u, 1f

the factor v /¢, can be varied That is always the case because v /@,

contains only the beam voltage and the distance x -~ x Since this
technique encounters some mathematical complications which would gec

beyond this elementary treatment, it will be reported separately else-
where

Instead another approach will be used here to trace back the
original beam properties The method consists of a velocity analysis
of each arriving phase increment @ and @ + d® (or 6 and A + df) In
the beam analyzer built i1in this laboratory this means 1s provided

(See Progress Report XIX-14 )
Suppose that with such an angular aperture a function

g) - dN 2
m(8) 46 (26)
could be measured Then corresponding to each angular incremecnst d6
there will be dN electrons, defined according to Eq (26) as

dNe = m(e)de (27)

The index 8 in dN makes sure that these electrons belong to the de-
flection angie 8 Now, suppose that for these dNg electrons pertaining

to a deflection angle 6 a particular velocity distribution tunctinn
vg(Adv) has been found VQ(AV) is defined as

vg(av) - ( sidf;“ Y (28)
(See Fig 9 )

-66-

T —



{ -
5
{

3

. e —— (Y T

T S ——————————- -

e e e ——— S

-
ve(Av) )
A
“-Av - - +Av
0
FIGURE 9

The question now arises as to what way this velocity distribution
function will map 1tself back at the starting point x. In other words,
how were those electrons distributed aloneg the entrance phase 9 to
arrive simultaneously at the phase © {or A) with that measured velocity
distribution? Let us define a phase-distribution function

w) = (ddN
Nog(w) = (4Ng (29)

which describes the distribution of those electrons along the starting
phase ¥, which later accumulated at the phase angle A

To transform the v-function into the N-function Eq (18) will be
used again to establish a relation between w, 9 and Av

Properly re-
arranged (18) reads

W-G'%eﬁ (30)

Differentiating w with respect to Av, keeping © consiant,
phase increment dw with the velocity increment Av

¢
de = —2 dAv (31)
Yo
Proceeding in a manner analogous to the considerations condensed in

kqs (20) to (23) (see page 64) one obtains the transformation v — N
1in the following form

correlates the

Ng, (v) = 22 va (22 (v - 6,)) (32)

Yo
¢O (o]

The index 1 i1n 6 indicates that this 1s the phase distribution of elec-
trons along w, later accumulating at a particular deflection angle 6,
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Following precisely the strategy applied to the distributicn
function M, one can easily determine how many electrons from an arbi-

trary deflection angle 6 have originated in a particular phase angle w,.
The answer is

Ne("z) = %Q vg (;—’Q(Vx -6)) (33)
(o] o]

Finally the original distribution function n(y) can be found by
adding all the electrons which started at v and arrived at all possible
deflection angles 6. Thus

n(y) - fzn No(w) 8 = %9 fzn vg( ;?(V - 8))de. (34)
o] v v [¢]

v

Since vg can be measured for all deflection angles 8, the integration

(34) can be carried out graphically or numerically.

With Eq. (34) the question of this section is answered: how to
correct angular aberrations which are caused by an undesired drift space
between the point of interest and the point of analysis by presence of
a finite velocity districution of the electrons in the beam.
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3. DEBUNCHING EFFECTS

In this section a rough estimate of the amount of velocity modu-
lation and increase of linear extensicn of a beam section will be made,
assuming that a tight bunch of N electrons all having the same velocity
vo will pass through the point of interest x, but will be observed at a

later point x'. Since in the meantime electrostatic forces will be at
work to debunch the bundle, a velocity component may be superimposed at
the point x' which was originally non-existent; this will increase the
length of the original bunch.

Suppose the original bunch is a short cylinder with the following
geometrical properties: Height h, and base circle radius r,. See

Fig. 10

/
2r 5’
—— b o
FIGURE 10

During its expansion its dimension may be h and r. The expressions for
the fields in the z and r direction can be approximately determined
assuming the disc to be very flat. Then

E, = 2npn (35)
E. = 2rnpr (36)
Suppose the disc contains N electrons; then the space charge p becomes
p = _.:N_Q (37)
nr h
Setting up the equation of motion in both directions
2
h" =48 -eE (38)
de? ™
2
r'=4dr-e g (39)
dta m .
-69-
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and inserting into (35) and (36) the expressions for p, one obtains

d’h . 2¢°N 1 (40)
de’? m o p?
d’r - 2¢°N L (41)
de’ m rh

These two differential equations have to be solved simultaneously, since
each one contains the argument of the other one.
Defining a constant

2
A = z%u , (42)
the above equations become
h = AL (43)
r
h" = AL (44)
rh
Proving first that the assumption
r = kh (45)
1s correct, where k is a constant and is defined by the initial condition
r, = kh,, (46)
because from (45) one gets
r” = kh”

which is true as one immediately sees by dividing (43) into (44), the
mathematical problem is reduced to finding solutions for the two differ-
ential equations:

- AL (47)
k h
r* - Ak L (48)
r
Both equations are of the same type, viz,
x" = CcL (49)
x
where only the constants differ in the two cases.
h 2
G =A —9; (50)
‘o
)
C = AL (51)
o
-70-
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Solutions for the differential equation (49) are readily obtained.
With the initial conditions

for 2;‘ (52)
f—___—

the first integral becomes

&I

1/ = 1/ (53)

x = x F (L) (54)
%

and the second

whereby the function F 1s defined as

F(cosh™ vz + Vz Vz - 1) =12 (55)

and is plotted in Fig. (11).
The time constant, ty, 18

3
_]/x
ty = f%— (56)
\ Eveluating this formula for both cases, r and h, one obtains with (S0)
and (51) 5
r. h
| ty = toh = top ° 1 °2A° (57)
i The solutions for h and r are finally
. L.L _0\
hy, t4 h
(58)
Pl ’__o
r, to r
I S N (59)
he o to

Two features of the above equations are worthwhile to note:

a) The time constant of expansion in both directions is the same.
b) The velocity of expansion reaches an asymptotic value in both
cases, because for h or r approaching infinity one obtains

he =[S (60) r'o=,/2A (61)
® 2 @ h

o
To
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X2

To arrive at more convenient units the constant A w.ll be computed from
Eq. (42). Introducing an average current per period T

T
_ Ide
1, = oo (62)
with
« e AN
I =e¢ dc
JdN = N
T=4%
one obtains for (62)
I, = -N$ (63)
With this, A becomes
A - i%sn A (64)

The asymptotic values for the velocities in the . and r direction ex-

pressed in electron volts finally become

A

Ul.o = 60 E;- Io/Amp (65)
A

Uy, = 60 22 1 /Amp. (66)
To

These values represent upper limits of the velocity to which electrons
can be accelerated 1f they originally belonged to a tight bunch with the
dimension h, and r,. If these velocities turn out to be very small in

comparison with the beam voltage, then one can forget ahqyt them,
However, 1f they do not turn out to be negiigible, one can expect aber-
rations unless one decreases one decisive parameter, viz, the current,
by choosing a smaller aperture.

To get also a better feeling for ihe magnitude of the expansion
process 1t 1s convenient to ask to what exteant, x/xo, of its original

dimension the bunch will expand after it has traveled a particular

distance L. Callirg the velocity of the bunch v,, then

L = vyt and L, = vgt,.
Equation (59) becomes
Xo L,
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Bell Telephone Labowetories
Murray Hill, New Jereey
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